On the role of rRNA tertiary structure in recognition of ribosomal protein L11 and thiostrepton.
نویسندگان
چکیده
Ribosomal protein L11 and an antibiotic, thiostrepton, bind to the same highly conserved region of large subunit ribosomal RNA and stabilize a set of NH4(+)-dependent tertiary interactions within the domain. In vitro selection from partially randomized pools of RNA sequences has been used to ask what aspects of RNA structure are recognized by the ligands. L11-selected RNAs showed little sequence variation over the entire 70 nucleotide randomized region, while thiostrepton required a slightly smaller 58 nucleotide domain. All the selected mutations preserved or stabilized the known secondary and tertiary structure of the RNA. L11-selected RNAs from a pool mutagenized only around a junction structure yielded a very different consensus sequence, in which the RNA tertiary structure was substantially destabilized and L11 binding was no longer dependent on NH4+. We propose that L11 can bind the RNA in two different 'modes', depending on the presence or absence of the NH4(+)-dependent tertiary structure, while thiostrepton can only recognize the RNA tertiary structure. The different RNA recognition mechanisms for the two ligands may be relevant to their different effects on protein synthesis.
منابع مشابه
The RNA-binding domain of ribosomal protein L11 recognizes an rRNA tertiary structure stabilized by both thiostrepton and magnesium ion.
Antibiotics that inhibit ribosomal function may do so by one of several mechanisms, including the induction of incorrect RNA folding or prevention of protein and/or RNA conformational transitions. Thiostrepton, which binds to the 'GTPase center' of the large subunit, has been postulated to prevent conformational changes in either the L11 protein or rRNA to which it binds. Scintillation proximit...
متن کاملL11 domain rearrangement upon binding to RNA and thiostrepton studied by NMR spectroscopy
Ribosomal proteins are assumed to stabilize specific RNA structures and promote compact folding of the large rRNA. The conformational dynamics of the protein between the bound and unbound state play an important role in the binding process. We have studied those dynamical changes in detail for the highly conserved complex between the ribosomal protein L11 and the GTPase region of 23S rRNA. The ...
متن کاملThe antibiotic thiostrepton inhibits a functional transition within protein L11 at the ribosomal GTPase centre.
A newly identified class of highly thiostrepton-resistant mutants of the archaeon Halobacterium halobium carry a missense mutation at codon 18 within the gene encoding ribosomal protein L11. In the mutant proteins, a proline, conserved in archaea and bacteria, is converted to either serine or threonine. The mutations do not impair either the assembly of the mutant L11 into 70 S ribosomes in viv...
متن کاملInteractions of the N-terminal domain of ribosomal protein L11 with thiostrepton and rRNA.
Ribosomal protein L11 has two domains: the C-terminal domain (L11-C76) binds rRNA, whereas the N-terminal domain (L11-NTD) may variously interact with elongation factor G, the antibiotic thiostrepton, and rRNA. To begin to quantitate these interactions, L11 from Bacillus stearothermophilus has been overexpressed and its properties compared with those of L11-C76 alone in a fluorescence assay for...
متن کاملThiostrepton-resistant mutants of Thermus thermophilus.
Ribosomal protein L11 and its associated binding site on 23S rRNA together comprise one of the principle components that mediate interactions of translation factors with the ribosome. This site is also the target of the antibiotic thiostrepton, which has been proposed to act by preventing important structural transitions that occur in this region of the ribosome during protein synthesis. Here, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic acids research
دوره 23 17 شماره
صفحات -
تاریخ انتشار 1995